The Cellular Level of Organization

- Basic, living, structural and functional unit of the body
 - compartmentalization of chemical reactions within specialized structures
 - regulate inflow & outflow of materials
 - use genetic material to direct cell activities
- Cytology = study of cellular structure
- Cell physiology = study of cellular function

Generalized Cell Structures

- Plasma membrane = cell membrane
- Nucleus = genetic material of cell
- Cytoplasm = everything between the membrane and the nucleus
 - cytosol = intracellular fluid
 - organelles = subcellular structures with specific functions

The Typical Cell

- Not all cells contain all of these organelles.

Plasma Membrane

- Flexible but sturdy barrier that surround cytoplasm of cell
- Fluid mosaic model describes its structure
 - “sea of lipids in which proteins float like icebergs”
 - membrane is 50% lipid & 50% protein
- held together by hydrogen bonds
 - lipid is barrier to entry or exit of polar substances
 - proteins are “gatekeepers” -- regulate traffic
- 50 lipid molecules for each protein molecule

Lipid Bilayer of the Cell Membrane
- Two back-to-back layers of 3 types of lipid molecules
- Cholesterol and glycolipids scattered among a double row of phospholipid molecules

Phospholipids
- Comprises 75% of lipids
- Phospholipid bilayer = 2 parallel layers of molecules
- Each molecule is amphipathic (has both a polar & nonpolar region)
 - polar parts (heads) are hydophilic and face on both surfaces a watery environment
 - nonpolar parts (tails) are hydrophobic and line up next to each other in the interior

Glycolipids within the Cell Membrane
- Comprises 5% of the lipids of the cell membrane
- Carbohydrate groups form a polar head only on the side of the membrane facing the extracellular fluid
Types of Membrane Proteins

- **Integral proteins**
 - extend into or completely across cell membrane
 - if extend completely across = transmembrane proteins
 - all are amphipathic with hydrophobic portions hiding among the phospholipid tails
 - glycoproteins have the sugar portion facing the extracellular fluid to form a glycocalyx
 - gives cell “uniqueness”, protects it from being digested, creates a stickiness to hold it to other cells or so it can hold a fluid layer creating a slippery surface

- **Peripheral proteins**
 - attached to either inner or outer surface of cell membrane and are easily removed from it

Functions of Membrane Proteins

- **Formation of Channel**
 - passageway to allow specific substance to pass through

- **Transporter Proteins**
 - bind a specific substance, change their shape & move it across membrane

- **Receptor Proteins**
 - cellular recognition site -- bind to substance
Functions of Membrane Proteins

- **Cell Identity Marker**
 - allow cell to recognize other similar cells

- **Linker**
 - anchor proteins in cell membrane or to other cells
 - allow cell movement
 - cell shape & structure

- **Act as Enzyme**
 - speed up reactions

Membrane Fluidity

- **Membranes are fluid structures (oil layer)**
 - self-sealing if punctured with needle

- **Explanation -- a compromise of forces**
 - membrane molecules can rotate & move freely
 - need to stay in one half of lipid bilayer
 - difficult for hydrophilic parts to pass through hydrophobic core of bilipid layer
 - fluidity is reduced by presence of cholesterol
 - increases stiffness of membrane it forms hydrogen bonds with neighboring phospholipid heads
Selective Permeability of Membrane

- Lipid bilayer
 - permeable to nonpolar, uncharged molecules: oxygen, CO₂, steroids
 - permeable to water which flows through gaps that form in hydrophobic core of membrane as phospholipids move about
- Transmembrane proteins act as specific channels
 - small and medium polar & charged particles
- Macromolecules unable to pass through the membrane
 - vesicular transport

Gradients Across the Plasma Membrane

- Membrane can maintain difference in concentration of a substance inside versus outside of the membrane (concentration gradient)
 - more O₂ & Na⁺ outside of cell membrane
 - more CO₂ and K⁺ inside of cell membrane
- Membrane can maintain a difference in charged ions between inside & outside of membrane (electrical gradient or membrane potential)
- Thus, substances move down their concentration gradient and towards the oppositely charged area
 - ions have electrochemical gradients

Transport Across the Plasma Membrane

- Substances cross membranes by a variety of processes:
 - mediated transport moves materials with the help of a transporter protein
 - nonmediated transport does not use a transporter protein
– active transport uses ATP to drive substances against their concentration gradients
– passive transport moves substances down their concentration gradient with only their kinetic energy
– vesicular transport move materials across membranes in small vesicles -- either by exocytosis or endocytosis

Principles of Diffusion

• Random mixing of particles in a solution as a result of the particle’s kinetic energy
 – more molecules move away from an area of high concentration to an area of low concentration
 • the greater the difference in concentration between the 2 sides of the membrane, the faster the rate of diffusion
 • the higher the temperature, the faster the rate of diffusion
 • the larger the size of the diffusing substance, the slower the rate of diffusion
 • an increase in surface area, increases the rate of diffusion
 • increasing diffusion distance, slows rate of diffusion
• When the molecules are evenly distributed, equilibrium has been reached

Diffusion

• Crystal of dye placed in a cylinder of water
• Net diffusion from the higher dye concentration to the region of lower dye
• Equilibrium has been reached in the far right cylinder

Osmosis

• Net movement of water through a selectively permeable membrane from an area of high water concentration to an area of lower water concentration
 – diffusion through lipid bilayer
 – aquaporins (transmembrane proteins) that function as water channels
• Only occurs if membrane is permeable to water but not to certain solutes
• Pure water on the left side & a membrane impermeable to the solute found on the right
 side
• Net movement of water is from left to right, until hydrostatic pressure (osmotic
 pressure) starts to push water back to the left

 Affects of Tonicity on RBCs in Lab
• Normally the osmotic pressure of the inside of the cell is equal to the fluid outside the
 cell
 – cell volume remains constant (solution is isotonic)
• Effects of fluids on RBCs in lab
 – water enters the cell faster than it leaves
 – water enters & leaves the cell in equal amounts
 – water leaves the cell

 Effects of Tonicity on Cell Membranes
• Isotonic solution
 – water concentration the same inside & outside of cell results in no net movement of
 water across cell membrane
• Hypotonic solution
 – higher concentration of water outside of cell results in hemolysis
• Hypertonic solution
 – lower concentration of water outside of cell causes crenation

 Diffusion Through the Lipid Bilayer
• Important for absorption of nutrients -- excretion of wastes
• Nonpolar, hydrophobic molecules
 – oxygen, carbon dioxide, nitrogen, fatty acids, steroids, small alcohols, ammonia
 and fat-soluble vitamins (A, E, D and K)
Diffusion Through Membrane Channels

- Each membrane channel specific for particular ion (K+, Cl-, Na+, or Ca²⁺)
- Slower than diffusion through membrane but still 1 million K⁺ through a channel in one second
- Channels may be open all the time or gated (closed randomly or as ordered)

Facilitated Diffusion

- Substance binds to specific transporter protein
- Transporter protein conformational change moves substance across cell membrane
- Facilitated diffusion occurs down concentration gradient only
 - if no concentration difference exists, no net movement across membrane occurs
- Rate of movement depends upon
 - steepness of concentration gradient
 - number of transporter proteins (transport maximum)

Active Transport

- Movement of polar or charged substances against their concentration gradient
 - energy-requiring process
 - energy from hydrolysis of ATP (primary active transport)
 - energy stored in an ionic concentration gradient (secondary active transport)
- Exhibits transport maximums and saturation
- Na⁺, K⁺, H⁺, Ca²⁺, I⁻, and Cl⁻, amino acids and monosaccharides
Primary Active Transport

- Transporter protein called a pump
 - works against concentration gradient
 - requires 40% of cellular ATP
- Na+/K+ ATPase pump
 - most common example
 - all cells have 1000s of them
 - maintains low concentration of Na+
 and a high concentration of K+ in the cytosol
 - operates continually
- Maintenance of osmotic pressure across membrane
 - cells neither shrink nor swell due to osmosis & osmotic pressure
 - sodium continually pumped out as if sodium could not enter the cell (factor in osmotic pressure of extracellular fluid)
 - K+ inside the cell contributes to osmotic pressure of cytosol

Secondary Active Transport

- Uses energy stored in an ion concentration gradient to move other substances against their own concentration gradient
- Na+/K+ pump maintains low concentration of Na+ inside of cells
 - provide route for Na+ to leak back in and use energy of motion to transport other substances
 - Na+ symporter proteins
 - glucose or amino acids rush inward with Na+ ions
 - Na+ antiporters protein
 - as Na+ ions rush inward, Ca+2 or H+ pushed out
 Antiporters and Symporters

One in & one out. Both going in
Vesicular Transport of Particles

- **Endocytosis** = bringing something into cell
 - **phagocytosis** = cell eating by macrophages & WBCs
 - particle binds to receptor protein
 - whole bacteria or viruses are engulfed & later digested
 - **pinocytosis** = cell drinking
 - no receptor proteins
 - **receptor-mediated endocytosis** = selective input
 - mechanism by which HIV virus enters cells
- **Exocytosis** = release something from cell
 - Vesicles form inside cell, fuse to cell membrane
 - Release their contents
 - digestive enzymes, hormones, neurotransmitters or waste products
 - replace cell membrane lost by endocytosis

Receptor-Mediated Endocytosis

- **Mechanism for uptake of specific substances -- ligands**
- Desired substance binds to receptor protein in clathrin-coated pit region of cell membrane causing membrane to fold inward
- Vesicles become uncoated & combine with endosome
- Receptor proteins separate from ligands and return to surface
- Ligands are digested by lysosomal enzymes or transported across cell -- epithelial cell crossing accomplished

Pinocytosis and Phagocytosis

No pseudopods form
- Nonselective drinking of extracellular fluid
- Pseudopods extend to form phagosome
 - Lysosome joins it
Cytosol = Intracellular fluid

- 55% of cell volume
- 75-90% water with other components
 - large organic molecules (proteins, carbos & lipids)
 - suspended by electrical charges
 - small organic molecules (simple sugars) & ions
 - dissolved
 - inclusions (large aggregates of one material)
 - lipid droplets
 - glycogen granules
- Site of many important chemical reactions
 - production of ATP, synthesis of building blocks

Cell Organelles
- Nonmembranous organelles lack membranes & are indirect contact with cytoplasm
- Membranous organelles surrounded by one or two lipid bilayer membranes

Cytoskeleton
- Network of protein filaments throughout the cytosol
- Functions
 - cell support and shape
 - organization of chemical reactions
 - cell & organelle movement
- Continually reorganized
Centrosome

- Found near nucleus
- Pericentriolar area
 - formation site for mitotic spindle and microtubules
- Centrosome
 - 2 centrioles (90 degrees to each other)
 - 9 clusters of 3 microtubules (9+0 array)
 - role in formation of cilia & flagella

Cilia and Flagella

- Structure
 - pairs of microtubules (9+2 array)
 - covered by cell membrane
 - basal body is centriole responsible for initiating its assembly
- Differences
 - cilia
 - short and multiple
 - flagella
 - longer and single

Movement of Cilia and Flagella

- Cilia
 - stiff during power stroke but flexible during recovery
 - many coordinated together
 - airways & uterine tube
- Flagella
 - single flagella wiggles in a wavelike pattern
 - propels sperm forward

Ribosomes

- Packages of Ribosomal RNA & protein
- Free ribosomes are loose in cytosol
 - synthesize proteins found inside the cell
- Membrane-bound ribosomes
 - attached to endoplasmic reticulum or nuclear membrane
 - synthesize proteins needed for plasma membrane or for export
 - 10 to 20 together form a polyribosome
- Inside mitochondria, synthesize mitochondrial proteins
Ribosomal Subunits

- Large + small subunits
 - made in the nucleolus
 - assembled in the cytoplasm

Endoplasmic Reticulum

- Network of membranes forming flattened sacs or tubules called cisterns
 - half of membranous surfaces within cytoplasm
- Rough ER
 - continuous with nuclear envelope & covered with attached ribosomes
 - synthesizes, processes & packages proteins for export
 - free ribosomes synthesize proteins for local use
- Smooth ER -- no attached ribosomes
 - synthesizes phospholipids, steroids and fats
 - detoxifies harmful substances (alcohol)

Golgi Complex

- 3-20 flattened, curved membranous sacs called cisterns
- Convex side faces ER & concave side faces cell membrane
- Processes & packages proteins produced by rough ER

Packaging by Golgi Complex

- Proteins pass from rough ER to golgi complex in transport vesicles
- Processed proteins pass from entry cistern to medial cistern to exit cistern in transfer vesicle
- Finished proteins exit golgi as secretory, membrane or storage vesicle (lysosome)
Lysosomes

- Membranous vesicles
 - formed in Golgi complex
 - filled with digestive enzymes
 - pumps in H+ ions until internal pH reaches 5.0
- Functions
 - digest foreign substances
 - autophagy (autophagosome forms)
 - recycles own organelles
 - autolysis
 - lysosomal damage after death

Peroxisomes

- Membranous vesicles
 - smaller than lysosomes
 - form by division of preexisting peroxisomes
 - contain enzymes that oxidize organic material
- Function
 - part of normal metabolic breakdown of amino acids and fatty acids
 - oxidizes toxic substances such as alcohol and formaldehyde
 - contains catalase which decomposes H2O2

Mitochondria

- Double membrane organelle
 - central cavity known as matrix
 - inner membrane folds known as crista
 - surface area for chemical reactions of cellular respiration
- Function
 - generation of ATP
 - powerhouse of cell
• Mitochondria self-replicate
 – increases with need for ATP
 – circular DNA with 37 genes
 – only inherited from mother

Nucleus

• Large organelle with double membrane nuclear envelope
 – outer membrane continuous with rough ER
 – perforated by water-filled nuclear pores (10X channel pore size)

• Nucleolus
 – spherical, dark bodies within the nucleus (no membrane)
 – site of ribosome assembly

Function of Nucleus

• 46 human DNA molecules or chromosomes
 – genes found on chromosomes
 – gene is directions for a specific protein

• Non-dividing cells contain nuclear chromatin
 – loosely packed DNA

• Dividing cells contain chromosomes
 – tightly packed DNA
 – it doubled (copied itself) before condensing

Protein Synthesis

• Instructions for making specific proteins is found in the DNA (your genes)
 – transcribe that information onto a messenger RNA molecule
 • each sequence of 3 nucleotides in DNA
 • each base triplet is transcribed as 3 RNA nucleotides (codon)
 – translate the “message” into a sequence of amino acids in order to build a protein
molecule
• each codon must be matched by an anticodon found on the tRNA carrying a specific amino acid

Transcription
• DNA sense strand is template for the creation of messenger RNA strand

Translation
• Process where mRNA, rRNA & tRNA are used to form a specific protein

Normal Cell Division
• Mitosis (somatic cell division)
 – one parent cell gives rise to 2 identical daughter cells
 • mitosis is nuclear division
 • cytokinesis is cytoplasmic division
 – occurs in billions of cells each day
 – needed for tissue repair and growth
• Meiosis (reproductive cell division)
 – egg and sperm cell production
 – in testes and ovary only
The Cell Cycle in Somatic Cells

- Process where cell duplicates its contents & divides in two
 - 23 homologous pairs of chromosomes must be duplicated
 - genes must be passed on correctly to the next generation of cells

- Nuclear division = mitosis
 - continuous process divided into 4 stages
 - prophase, metaphase, anaphase & telophase

- Cytoplasmic division = cytokinesis

Interphase Stage of Cell Cycle

- Doubling of DNA and centrosome
- Phases of interphase stage -- G1, S, and G2
 - G1 = cytoplasmic increase (G0 if never divides again)
 - S = replication of chromosomes
 - G2 = cytoplasmic growth

Replication of Chromosomes

- Doubling of genetic material during interphase. (S phase)
- DNA molecules unzip
- Mirror copy is formed along each old strand.
- Nitrogenous bases pick up complementary base
- 2 complete identical DNA molecules formed
Stages of Nuclear Division: Mitosis

• Prophase
• Metaphase
• Anaphase
• Telophase

Control of Cell Destiny

• Cell destiny is either to remain alive & functioning, to grow & divide or to die
• Homeostasis must maintain balance between cell multiplication & cell death
• The protein cyclin builds up during interphase and triggers mitosis
• Programmed cell death (apoptosis) occurs if a triggering agent turns on suicide enzymes that kills the cell
• Necrosis is cell death caused by injury or infection

Aging

• Age alters the body’s ability to adapt to changes in the environment
• Theories to explain aging
 – cells have a limited number of divisions
 – glucose bonds irreversibly with proteins
 – free radical theory---electrically charged molecules with an unpaired electron cause cell damage
 – autoimmune responses due to changes in cell identity markers
• Evidence of aging
 – damaged skin, hardened arteries, stiff joints

Cellular Diversity

• 100 trillion cells in the body -- 200 different types
• Vary in size and shape related to their function
Cancer = out of control cell division

- Hyperplasia = increased number of cell divisions
 - benign tumor does not metastasize or spread
 - malignant---spreads due to cells that detach from tumor and enter blood or lymph
- Causes -- carcinogens, x-rays, viruses
 - every cell has genes that regulate growth & development
 - mutation in those genes due to radiation or chemical agents causes excess production of growth factors
- Carcinogenesis
 - multistep process that takes years and many different mutations that need to occur